摘要翻译:
建立了改进拓扑顶点与Hopf链的sl(N)同调不变量之间的直接映射,其中包括Khovanov-Rozansky同调作为特例。该关系式为Hopf链的同调不变量提供了一个精确的答案,它的分量由sl(N)的任意表示着色。目前,这类同调不变量的数学公式只适用于基本表示(Khovanov-Rozansky理论),它与精化拓扑顶点的关系对于与其他表示(R_1,R_2)有关的量子群不变量的分类是有用的。我们的结果是第一次直接验证了一系列猜想,这些猜想证明了存在膜时BPS态的Hilbert空间的链接同源性,其中梯度的物理解释是根据膜的电荷终止于拉格朗日膜。
---
英文标题:
《Link Homologies and the Refined Topological Vertex》
---
作者:
Sergei Gukov, Amer Iqbal, Can Kozcaz, Cumrun Vafa
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:High Energy Physics - Theory        高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Geometric Topology        几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
  We establish a direct map between refined topological vertex and sl(N) homological invariants of the of Hopf link, which include Khovanov-Rozansky homology as a special case. This relation provides an exact answer for homological invariants of the of Hopf link, whose components are colored by arbitrary representations of sl(N). At present, the mathematical formulation of such homological invariants is available only for the fundamental representation (the Khovanov-Rozansky theory) and the relation with the refined topological vertex should be useful for categorifying quantum group invariants associated with other representations (R_1, R_2). Our result is a first direct verification of a series of conjectures which identifies link homologies with the Hilbert space of BPS states in the presence of branes, where the physical interpretation of gradings is in terms of charges of the branes ending on Lagrangian branes. 
---
PDF链接:
https://arxiv.org/pdf/0705.1368