摘要翻译:
在这项工作中,通过使用一种紧凑的系统级建模方法,开发了一种新颖的数字信道化器设计。该模型有效地捕捉了数字信道化系统的关键特性及其时变操作。该模型将强大的马尔可夫决策过程(MDP)技术应用于可重构信道化处理的设计优化。该结果为数字信道化器的设计和实现提供了一种有希望的方法,可以动态地适应变化的用例和随机环境,同时为多个相互冲突的性能目标进行优化。该方法用于使用MDP生成时变环境的运行时重构策略。通过大量的仿真,与现有技术相比,证明了自适应的鲁棒性。
---
英文标题:
《Reconfigurable Digital Channelizer Design Using Factored Markov Decision
Processes》
---
作者:
A. Sapio and L. Li and J. Wu and M. Wolf and S. S. Bhattacharyya
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
In this work, a novel digital channelizer design is developed through the use of a compact, system-level modeling approach. The model efficiently captures key properties of a digital channelizer system and its time-varying operation. The model applies powerful Markov Decision Process (MDP) techniques in new ways for design optimization of reconfigurable channelization processing. The result is a promising methodology for design and implementation of digital channelizers that adapt dynamically to changing use cases and stochastic environments while optimizing simultaneously for multiple conflicting performance goals. The method is used to employ an MDP to generate a runtime reconfiguration policy for a time-varying environment. Through extensive simulations, the robustness of the adaptation is demonstrated in comparison with the prior state of the art.
---
PDF链接:
https://arxiv.org/pdf/1712.0834