摘要翻译:
设$Q$是代数李代数,$Q<m>$a(推广的)Takiff代数。$q$的任何有限阶自同构$\theta$都会诱导出一个相同阶的$q<m>$的自同构,表示为$\theta$。我们研究了$q<m>$中$theta$的不动点子代数在$theta$的其它特征空间上表示的不变理论性质。
---
英文标题:
《Periodic automorphisms of Takiff algebras, contractions, and
$\theta$-groups》
---
作者:
Dmitri I. Panyushev
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $q$ be an algebraic Lie algebra and $q<m>$ a (generalised) Takiff algebra. Any finite order automorphism $\theta$ of $q$ induces an automorphisms of $q<m>$ of the same order, denoted $\Theta$. We study invariant-theoretic properties of representations of the fixed point subalgebra of $\Theta$ on other eigenspaces of $\Theta$ in $q<m>$.
---
PDF链接:
https://arxiv.org/pdf/0710.2113