全部版块 我的主页
论坛 经济学人 二区 外文文献专区
356 0
2022-03-06
摘要翻译:
从理论上考虑了由简谐势和随机势叠加而成的外势中的玻色-爱因斯坦凝聚。通过半定量分析,我们发现无序的大小、形状和激发能都是无序强度的函数。对于正散射长度和足够强的无序度,凝聚体衰变为每一个Larkin长度${\cal L}$大小的碎片。这种状态在很大的粒子数范围内是稳定的。呼吸模式的频率为$1/{\cal L}^2$。对于负散射长度,一个尺寸为${\cal L}$的凝聚体可能作为亚稳态存在。这些发现推广到各向异性陷阱。
---
英文标题:
《Bose-Einstein Condensates in Strongly Disordered Traps》
---
作者:
T. Nattermann and V.L. Pokrovsky
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Disordered Systems and Neural Networks        无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--

---
英文摘要:
  A Bose-Einstein condensate in an external potential consisting of a superposition of a harmonic and a random potential is considered theoretically.   From a semi-quantitative analysis we find the size, shape and excitation energy as a function of the disorder strength. For positive scattering length and sufficiently strong disorder the condensate decays into fragments each of the size of the Larkin length ${\cal L}$. This state is stable over a large range of particle numbers. The frequency of the breathing mode scales as $1/{\cal L}^2$. For negative scattering length a condensate of size ${\cal L}$ may exist as a metastable state. These finding are generalized to anisotropic traps.
---
PDF链接:
https://arxiv.org/pdf/707.4444
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群