摘要翻译:
在回顾了理想玻色-爱因斯坦气体在盒子和谐波陷阱中的情况后,我讨论了相互作用对玻色-爱因斯坦凝聚体(BEC)形成的影响,以及小振幅微扰的动力学(Bogoliubov方程)。当凝结物以ω-角速度旋转时,一个或几个涡旋成核,产生许多可观察到的后果。随着旋转速度的加快,涡旋形成密集的三角形阵列,这些涡旋的集体行为具有额外的实验意义。对于径向陷阱频率ω_perp附近的ω,最低朗道能级近似变得适用,提供了这种快速旋转凝结体的简单图像。最终,当欧米茄接近欧米茄Perp时,旋转的稀气体将经历一个从超流体到各种高关联(非超流体)状态的量子相变,类似于电子在强垂直磁场中的分数量子霍尔效应。
---
英文标题:
《Rotating trapped Bose-Einstein condensates》
---
作者:
Alexander L. Fetter
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
After reviewing the ideal Bose-Einstein gas in a box and in a harmonic trap, I discuss the effect of interactions on the formation of a Bose-Einstein condensate (BEC), along with the dynamics of small-amplitude perturbations (the Bogoliubov equations). When the condensate rotates with angular velocity Omega, one or several vortices nucleate, with many observable consequences. With more rapid rotation, the vortices form a dense triangular array, and the collective behavior of these vortices has additional experimental implications. For Omega near the radial trap frequency omega_perp, the lowest-Landau-level approximation becomes applicable, providing a simple picture of such rapidly rotating condensates. Eventually, as Omega approaches omega_perp, the rotating dilute gas is expected to undergo a quantum phase transition from a superfluid to various highly correlated (nonsuperfluid) states analogous to those familiar from the fractional quantum Hall effect for electrons in a strong perpendicular magnetic field.
---
PDF链接:
https://arxiv.org/pdf/801.2952