摘要翻译:
本文考虑仿射d-空间C^d(d>2)中(d+1)点的Hilbert格式Hilb^{d+1}(C^d),它包含任意极大理想的平方。用Schur模描述了Hilb^{d+1}(C^d)的最对称仿射开子格式的方程。此外,我们还证明了hilb^{d+1}(C^d)对于n>d>11是可约的。
---
英文标题:
《On the symmetric subscheme of Hilbert scheme of points》
---
作者:
Kyungyong Lee
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We consider the Hilbert scheme Hilb^{d+1}(C^d) of (d+1) points in affine d-space C^d (d > 2), which includes the square of any maximal ideal. We describe equations for the most symmetric affine open subscheme of Hilb^{d+1}(C^d), in terms of Schur modules. In addition we prove that Hilb^{d+1}(C^d) is reducible for n>d>11.
---
PDF链接:
https://arxiv.org/pdf/0708.3390