全部版块 我的主页
论坛 经济学人 二区 外文文献专区
512 0
2022-03-06
摘要翻译:
计算智能(CI)是人工智能范式的一个分支,主要研究在复杂多变的环境中实现或促进智能行为的自适应机制。CI有几种范式[如人工神经网络、进化计算、群体智能、人工免疫系统、模糊系统和许多其他],每一种都起源于生物系统[生物神经系统、自然达尔文进化、社会行为、免疫系统、生物体与环境的相互作用]。这些范例大多演变成独立的机器学习(ML)技术,其中概率方法与CI技术互补使用,以便有效地结合学习、适应、进化和模糊逻辑的元素,创建在某种意义上是智能的启发式算法。目前的趋势是发展共识技术,因为没有一个单一的机器学习算法在所有可能的情况下都优于其他算法。为了克服这一问题,在ML中提出了几种元方法,侧重于将不同方法的结果集成到单个预测中。本文讨论了一个非线性方程的Landau理论,它可以描述从一个独立学习Agent集合中获得的信息的自适应集成。每个个体主体对其他学习者的影响类似于社会影响理论的描述。共识系统的最终决策结果是在平稳极限下采用多数规则计算的,而少数解作为复杂的截然相反意见的间歇聚类可以在多数群体中生存。
---
英文标题:
《Landau Theory of Adaptive Integration in Computational Intelligence》
---
作者:
Dariusz Plewczynski
---
最新提交年份:
2010
---
分类信息:

一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Physics        物理学
二级分类:Adaptation and Self-Organizing Systems        自适应和自组织系统
分类描述:Adaptation, self-organizing systems, statistical physics, fluctuating systems, stochastic processes, interacting particle systems, machine learning
自适应,自组织系统,统计物理,波动系统,随机过程,相互作用粒子系统,机器学习
--
一级分类:Quantitative Biology        数量生物学
二级分类:Neurons and Cognition        神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--
一级分类:Quantitative Biology        数量生物学
二级分类:Populations and Evolution        种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--

---
英文摘要:
  Computational Intelligence (CI) is a sub-branch of Artificial Intelligence paradigm focusing on the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing environments. There are several paradigms of CI [like artificial neural networks, evolutionary computations, swarm intelligence, artificial immune systems, fuzzy systems and many others], each of these has its origins in biological systems [biological neural systems, natural Darwinian evolution, social behavior, immune system, interactions of organisms with their environment]. Most of those paradigms evolved into separate machine learning (ML) techniques, where probabilistic methods are used complementary with CI techniques in order to effectively combine elements of learning, adaptation, evolution and Fuzzy logic to create heuristic algorithms that are, in some sense, intelligent. The current trend is to develop consensus techniques, since no single machine learning algorithms is superior to others in all possible situations. In order to overcome this problem several meta-approaches were proposed in ML focusing on the integration of results from different methods into single prediction. We discuss here the Landau theory for the nonlinear equation that can describe the adaptive integration of information acquired from an ensemble of independent learning agents. The influence of each individual agent on other learners is described similarly to the social impact theory. The final decision outcome for the consensus system is calculated using majority rule in the stationary limit, yet the minority solutions can survive inside the majority population as the complex intermittent clusters of opposite opinion.
---
PDF链接:
https://arxiv.org/pdf/1006.1828
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群