摘要翻译:
本文介绍了部分松弛方法,并将其应用于基于谱搜索的DOA估计。与现有的Capon或MUSIC方法不同,该方法可以被认为是多源估计准则的单源逼近,该方法考虑了多源的存在。在每个考虑的方向上,剩余干扰信号的流形结构被放松,从而得到干扰参数的闭合形式估计。由于这种松弛,传统的多维优化问题简化为简单的谱搜索。遵循这一原则,我们提出了基于确定性极大似然估计、加权子空间拟合和协方差拟合的估计方法。为了有效地计算伪谱,在部分松弛方法中采用了一种基于有理函数逼近的迭代生根格式。仿真结果表明,在低信噪比和低快照数的情况下,无论传感器阵列的具体结构如何,所提出的估计器的性能都优于传统的估计器,同时保持了与MUSIC相当的计算量。
---
英文标题:
《Partial Relaxation Approach: An Eigenvalue-Based DOA Estimator Framework》
---
作者:
Minh Trinh-Hoang, Mats Viberg and Marius Pesavento
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
In this paper, the partial relaxation approach is introduced and applied to DOA estimation using spectral search. Unlike existing methods like Capon or MUSIC which can be considered as single source approximations of multi-source estimation criteria, the proposed approach accounts for the existence of multiple sources. At each considered direction, the manifold structure of the remaining interfering signals impinging on the sensor array is relaxed, which results in closed form estimates for the interference parameters. The conventional multidimensional optimization problem reduces, thanks to this relaxation, to a simple spectral search. Following this principle, we propose estimators based on the Deterministic Maximum Likelihood, Weighted Subspace Fitting and covariance fitting methods. To calculate the pseudo-spectra efficiently, an iterative rooting scheme based on the rational function approximation is applied to the partial relaxation methods. Simulation results show that the performance of the proposed estimators is superior to the conventional methods especially in the case of low Signal-to-Noise-Ratio and low number of snapshots, irrespectively of any specific structure of the sensor array while maintaining a comparable computational cost as MUSIC.
---
PDF链接:
https://arxiv.org/pdf/1711.01982