全部版块 我的主页
论坛 经济学人 二区 外文文献专区
285 0
2022-03-06
摘要翻译:
社交媒体中用户生成的内容数量的增加,提高了根据内容质量分析和组织内容的重要性。在这里,我们提出了一种使用音频指纹来组织和推断用户生成的音频内容质量的方法。该方法检测不同音频片段之间的重叠片段,根据事件对数据进行组织和聚类,并推断样本的音频质量。使用从YouTube上手动爬行的音乐会录音的测试设置来验证所提出的方法。结果表明,所提出的方法比以往的方法取得了更好的效果。
---
英文标题:
《Automatic Organisation and Quality Analysis of User-Generated Content
  with Audio Fingerprinting》
---
作者:
Gon\c{c}alo Mordido, Jo\~ao Magalh\~aes and Sofia Cavaco
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science        计算机科学
二级分类:Multimedia        多媒体
分类描述:Roughly includes material in ACM Subject Class H.5.1.
大致包括ACM学科类H.5.1中的材料。
--

---
英文摘要:
  The increase of the quantity of user-generated content experienced in social media has boosted the importance of analysing and organising the content by its quality. Here, we propose a method that uses audio fingerprinting to organise and infer the quality of user-generated audio content. The proposed method detects the overlapping segments between different audio clips to organise and cluster the data according to events, and to infer the audio quality of the samples. A test setup with concert recordings manually crawled from YouTube is used to validate the presented method. The results show that the proposed method achieves better results than previous methods.
---
PDF链接:
https://arxiv.org/pdf/1708.05291
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群