全部版块 我的主页
论坛 经济学人 二区 外文文献专区
293 0
2022-03-06
摘要翻译:
定向路径作为线性聚合物的模型在科学文献中被广泛使用。这种路径模型,特别是线性聚合物的构象熵和它对自由能的影响。这些定向模型是自回避行走的简化版本,但它们确实可以洞察聚合物的相行为,也可以作为研究线性聚合物行为中构象自由度影响的工具。本文研究了线性聚合物在约束几何(楔形)中的有向路径模型。我们主要关注的焦点是$C_n$,长度为$n$steps的有向晶格路径的数目,它在东北和东南方向上采取步骤,并且限制在楔形$y=\pm x/p$,其中$p$是一个整数。本文详细研究了P=2$的情形,并用迭代核方法确定母函数。我们还研究了$C_n$的非对称性。特别地,我们证明$$c_n=[0.67874...]\乘以2^{n-1}(1+(-1)^n)+O((4/3^{3/4})^{n+O(n)})+O((4/3^{3/4})^n)$$$,其中我们可以很少努力地确定常数$0.67874...$到任意精度。
---
英文标题:
《Directed Paths in a Wedge》
---
作者:
E J Janse van Rensburg, T Prellberg, A Rechnitzer
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Soft Condensed Matter        软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Mathematical Physics        数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics        数学
二级分类:Mathematical Physics        数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--

---
英文摘要:
  Directed paths have been used extensively in the scientific literature as a model of a linear polymer. Such paths models in particular the conformational entropy of a linear polymer and the effects it has on the free energy. These directed models are simplified versions of the self-avoiding walk, but they do nevertheless give insight into the phase behaviour of a polymer, and also serve as a tool to study the effects of conformational degrees of freedom in the behaviour of a linear polymer. In this paper we examine a directed path model of a linear polymer in a confining geometry (a wedge). The main focus of our attention is $c_n$, the number of directed lattice paths of length $n$ steps which takes steps in the North-East and South-East directions and which is confined to the wedge $Y=\pm X/p$, where $p$ is an integer. In this paper we examine the case $p=2$ in detail, and we determine the generating function using the iterated kernel method. We also examine the asymtotics of $c_n$. In particular, we show that $$ c_n = [0.67874...]\times 2^{n-1}(1+(-1)^n) + O((4/3^{3/4})^{n+o(n)}) + o((4/3^{3/4})^n) $$ where we can determine the constant $0.67874...$ to arbitrary accuracy with little effort.
---
PDF链接:
https://arxiv.org/pdf/706.4337
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群