全部版块 我的主页
论坛 经济学人 二区 外文文献专区
528 0
2022-04-10
摘要翻译:
在本文中,我们通过允许经典移动的叠加来实现经典井字游戏的最小量化。为了使量子博弈适当地简化为经典博弈,我们要求合法的量子移动与以前的所有移动正交。我们也承认干扰效应,通过平方的振幅和所有移动的球员计算他或她的职业水平给定的地点。当我们可以在$3乘以3$网格中绘制的八条直线上的职业总和大于三时,玩家获胜。我们先随机,然后确定地玩量子tic-tac-toe,以探索不同的开局棋、结束棋以及不同的攻防策略组合对比赛结果的影响。与经典的井字游戏不同,确定性量子游戏并不总是以平局告终。与大多数没有机会的经典两人游戏相比,玩家2有可能获胜。更有趣的是,我们发现玩家1在以量子招式开局时享有压倒性的量子优势,但在以经典招式开局时就失去了这种优势。我们还发现量子阻塞移动,由对手可以用来赢得比赛的移动的加权叠加组成,在拒绝对手他或她的胜利方面是非常有效的。然后我们推测这些结果可能对量子信息传输和投资组合优化有什么影响。
---
英文标题:
《Strategic Insights From Playing the Quantum Tic-Tac-Toe》
---
作者:
J. N. Leaw and S. A. Cheong
---
最新提交年份:
2010
---
分类信息:

一级分类:Physics        物理学
二级分类:Quantum Physics        量子物理学
分类描述:Description coming soon
描述即将到来
--
一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Physics        物理学
二级分类:Mathematical Physics        数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics        数学
二级分类:Mathematical Physics        数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Quantitative Finance        数量金融学
二级分类:Portfolio Management        项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--

---
英文摘要:
  In this paper, we perform a minimalistic quantization of the classical game of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum game to reduce properly to the classical game, we require legal quantum moves to be orthogonal to all previous moves. We also admit interference effects, by squaring the sum of amplitudes over all moves by a player to compute his or her occupation level of a given site. A player wins when the sums of occupations along any of the eight straight lines we can draw in the $3 \times 3$ grid is greater than three. We play the quantum tic-tac-toe first randomly, and then deterministically, to explore the impact different opening moves, end games, and different combinations of offensive and defensive strategies have on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic quantum game does not always end in a draw. In contrast also to most classical two-player games of no chance, it is possible for Player 2 to win. More interestingly, we find that Player 1 enjoys an overwhelming quantum advantage when he opens with a quantum move, but loses this advantage when he opens with a classical move. We also find the quantum blocking move, which consists of a weighted superposition of moves that the opponent could use to win the game, to be very effective in denying the opponent his or her victory. We then speculate what implications these results might have on quantum information transfer and portfolio optimization.
---
PDF链接:
https://arxiv.org/pdf/1007.3601
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群