全部版块 我的主页
论坛 经济学人 二区 外文文献专区
449 0
2022-03-06
摘要翻译:
许多现代视频处理管道依赖于边缘感知(EA)滤波方法。然而,由于计算量大,目前的高质量方法难以在嵌入式硬件上实时运行。为此,我们提出了一种高质量EA方法的区域效率和实时性硬件实现。特别地,我们重点介绍了最近提出的渗透率滤波器(PF),它在HDR色调映射、视差和光流估计等领域提供了很好的质量和性能。我们提出了一种高效的硬件加速器,它实现了PF的平铺变体,具有低的片上存储器需求和显著降低的外部存储器带宽(非平铺PF的6.4 x W.R.T)。该设计采用65 nm CMOS工艺制作,能够在24.8Hz下过滤720p灰度视频,计算密度达到6.7GFLops/mm2(比嵌入式GPU高12倍)。低的面积和带宽要求使得加速器非常适合集成到硅面积预算受限和外部存储器通常是严重竞争的资源的SOC中。
---
英文标题:
《Hydra: An Accelerator for Real-Time Edge-Aware Permeability Filtering in
  65nm CMOS》
---
作者:
Manuel Eggimann, Christelle Gloor, Florian Scheidegger, Lukas
  Cavigelli, Michael Schaffner, Aljosa Smolic, Luca Benini
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science        计算机科学
二级分类:Hardware Architecture        硬件体系结构
分类描述:Covers systems organization and hardware architecture. Roughly includes material in ACM Subject Classes C.0, C.1, and C.5.
涵盖系统组织和硬件架构。大致包括ACM主题课程C.0、C.1和C.5中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Graphics        图形学
分类描述:Covers all aspects of computer graphics. Roughly includes material in all of ACM Subject Class I.3, except that I.3.5 is is likely to have Computational Geometry as the primary subject area.
涵盖了计算机图形学的各个方面。大致包括所有ACM课程I.3的材料,除了I.3.5可能有计算几何作为主要的学科领域。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Many modern video processing pipelines rely on edge-aware (EA) filtering methods. However, recent high-quality methods are challenging to run in real-time on embedded hardware due to their computational load. To this end, we propose an area-efficient and real-time capable hardware implementation of a high quality EA method. In particular, we focus on the recently proposed permeability filter (PF) that delivers promising quality and performance in the domains of HDR tone mapping, disparity and optical flow estimation. We present an efficient hardware accelerator that implements a tiled variant of the PF with low on-chip memory requirements and a significantly reduced external memory bandwidth (6.4x w.r.t. the non-tiled PF). The design has been taped out in 65 nm CMOS technology, is able to filter 720p grayscale video at 24.8 Hz and achieves a high compute density of 6.7 GFLOPS/mm2 (12x higher than embedded GPUs when scaled to the same technology node). The low area and bandwidth requirements make the accelerator highly suitable for integration into SoCs where silicon area budget is constrained and external memory is typically a heavily contended resource.
---
PDF链接:
https://arxiv.org/pdf/1711.03538
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群