摘要翻译:
Rapoport和Zink在他们的书中为Fontaine过滤的等晶体构造了严格的解析周期空间,以及从p-可除群的模空间到其中一些周期空间的周期态射。我们确定了这些周期态射的图像,从而促成了格罗滕迪克的一个问题。我们给出的例子表明,只有在极少数情况下,图像是Rapoport-Zink周期空间的全部。
---
英文标题:
《On period spaces for p-divisible groups》
---
作者:
Urs Hartl
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In their book Rapoport and Zink constructed rigid analytic period spaces for Fontaine's filtered isocrystals, and period morphisms from moduli spaces of p-divisible groups to some of these period spaces. We determine the image of these period morphisms, thereby contributing to a question of Grothendieck. We give examples showing that only in rare cases the image is all of the Rapoport-Zink period space.
---
PDF链接:
https://arxiv.org/pdf/0709.3444