摘要翻译:
利用虚拟股票市场和人工交互软件投资者,即基于Agent的模型(ABMs),我们提出了一种对现实世界的金融时间序列进行逆向工程的方法。我们将金融市场建模为由大量相互作用的有界理性代理人组成的市场。通过优化实际数据与重建后的虚拟股票市场数据的相似性,我们得到了一些参数和策略,揭示了目标股票市场的一些内在运行机制。我们通过对Nasdaq综合指数的方向移动的样本外预测来验证我们的方法。
---
英文标题:
《Reverse Engineering Financial Markets with Majority and Minority Games
  using Genetic Algorithms》
---
作者:
J. Wiesinger, D. Sornette, J. Satinover
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Trading and Market Microstructure        交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Multiagent Systems        多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式
人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
---
英文摘要:
  Using virtual stock markets with artificial interacting software investors, aka agent-based models (ABMs), we present a method to reverse engineer real-world financial time series. We model financial markets as made of a large number of interacting boundedly rational agents. By optimizing the similarity between the actual data and that generated by the reconstructed virtual stock market, we obtain parameters and strategies, which reveal some of the inner workings of the target stock market. We validate our approach by out-of-sample predictions of directional moves of the Nasdaq Composite Index. 
---
PDF链接:
https://arxiv.org/pdf/1002.2171