摘要翻译:
本文导出了具有最小均方误差(MMSE)估计器的多输入多输出(MIMO)接收机组合器的闭式表达式。我们建议在射频(RF)路径上使用可变位分辨率的模数转换器(ADC)。所设计的组合器是每个RF路径上量化误差的函数。在massive MIMO接收机结构中,使用非常低的位分辨率ADC(1-2bits)是一种减少大功率需求的流行方法。我们表明,在一定的信道条件下,在不同的RF链路上采用不等比特分辨率的ADC(例如1-4比特之间),以及所提出的合并器,可以提高MIMO接收机在均方误差(MSE)意义下的性能。可变位分辨率ADC仍然在所有路径(例如,2位)上使用等位分辨率ADC的功率限制内。我们提出了一个遗传算法,并结合派生的组合器,以得到一个最优的ADC比特分配框架,显著降低了计算复杂度。
---
英文标题:
《A Joint Combiner and Bit Allocation Design for Massive MIMO Using
Genetic Algorithm》
---
作者:
I. Zakir Ahmed, Hamid Sadjadpour, Shahram Yousefi
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
In this paper, we derive a closed-form expression for the combiner of a multiple-input-multiple-output (MIMO) receiver equipped with a minimum-mean-square-error (MMSE) estimator. We propose using variable-bit-resolution analog-to- digital converters (ADC) across radio frequency (RF) paths. The combiner designed is a function of the quantization errors across each RF path. Using very low bit resolution ADCs (1-2bits) is a popular approach with massive MIMO receiver architectures to mitigate large power demands. We show that for certain channel conditions, adopting unequal bit resolution ADCs (e.g., between 1 and 4 bits) on different RF chains, along with the proposed combiner, improves the performance of the MIMO receiver in the Mean Squared Error (MSE) sense. The variable-bit-resolution ADCs is still within the power constraint of using equal bit resolution ADCs on all paths (e.g., 2-bits). We propose a genetic algorithm in conjunction with the derived combiner to arrive at an optimal ADC bit allocation framework with significant reduction in computational complexity.
---
PDF链接:
https://arxiv.org/pdf/1711.06706