摘要翻译:
准确定位低频振荡源是抑制持续振荡的前提,是电网安全稳定运行的重要保证。利用同步相量测量,提出了一种用于电力系统强迫振荡源定位的
机器学习方法。利用各电厂的转子角和有功功率构造多变量时间序列(MTS)。应用马氏距离度量和动态时间规整,可以适当地测量不同相位或长度的MTS之间的距离。得到的距离度量表示不同扰动源下强迫振荡瞬态阶段的特征,用于离线分类器训练和在线匹配以定位扰动源。四机两区系统和IEEE39节点系统的仿真结果表明,该定位方法能够在线识别电力系统强迫振荡源,具有较高的精度。
---
英文标题:
《Forced Oscillation Source Location via Multivariate Time Series
Classification》
---
作者:
Yao Meng, Zhe Yu, Di Shi, Desong Bian, Zhiwei Wang
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Precisely locating low-frequency oscillation sources is the prerequisite of suppressing sustained oscillation, which is an essential guarantee for the secure and stable operation of power grids. Using synchrophasor measurements, a machine learning method is proposed to locate the source of forced oscillation in power systems. Rotor angle and active power of each power plant are utilized to construct multivariate time series (MTS). Applying Mahalanobis distance metric and dynamic time warping, the distance between MTS with different phases or lengths can be appropriately measured. The obtained distance metric, representing characteristics during the transient phase of forced oscillation under different disturbance sources, is used for offline classifier training and online matching to locate the disturbance source. Simulation results using the four-machine two-area system and IEEE 39-bus system indicate that the proposed location method can identify the power system forced oscillation source online with high accuracy.
---
PDF链接:
https://arxiv.org/pdf/1711.03601