摘要翻译:
隐藏正则变异定义了满足$\mathbb{E}=[0,\infty]^d\backslash\{(0,0,...,0)\}$上的多元正则变异的分布子族,并在子锥$\mathbb{E}^{(2)}=\mathbb{E}\backslash\cup_{i=1}^d\mathbb{L}_i$上建模另一个正则变异,其中$\mathbb{L}_i$是$i$的轴。我们将隐正则变差的概念推广到$\mathbb{E}^{(2)}$的子锥。我们提出了一种检测隐正则变差存在的方法,如果隐正则变差存在,则提出了利用其半参数结构估计极限测度的方法。我们展示了隐藏的规则变化产生更好的风险集概率估计的例子。
---
英文标题:
《Hidden Regular Variation: Detection and Estimation》
---
作者:
Abhimanyu Mitra, Sidney I. Resnick
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Hidden regular variation defines a subfamily of distributions satisfying multivariate regular variation on $\mathbb{E} = [0, \infty]^d \backslash \{(0,0, ..., 0) \} $ and models another regular variation on the sub-cone $\mathbb{E}^{(2)} = \mathbb{E} \backslash \cup_{i=1}^d \mathbb{L}_i$, where $\mathbb{L}_i$ is the $i$-th axis. We extend the concept of hidden regular variation to sub-cones of $\mathbb{E}^{(2)}$ as well. We suggest a procedure for detecting the presence of hidden regular variation, and if it exists, propose a method of estimating the limit measure exploiting its semi-parametric structure. We exhibit examples where hidden regular variation yields better estimates of probabilities of risk sets.
---
PDF链接:
https://arxiv.org/pdf/1001.5058