全部版块 我的主页
论坛 经济学人 二区 外文文献专区
292 0
2022-03-06
摘要翻译:
我们提出了一种无并行数据的语音转换(VC)方法,它可以在不依赖并行数据的情况下学习从源语音到目标语音的映射。该方法具有通用、高质量、无并行数据的特点,无需额外的数据、模块或对齐过程。它还避免了许多传统的基于统计模型的VC方法中出现的过平滑现象。我们的方法,称为CycleGAN-VC,使用循环一致的对抗网络(CycleGAN)与门控卷积神经网络(CNNs)和身份映射丢失。CycleGAN使用对抗性和循环一致性损失同时学习正向和逆向映射。这使得从未配对的数据中找到最佳伪对成为可能。此外,对抗性损失有助于减少转换特征序列的过平滑。我们用门控CNNs配置一个CycleGAN,并用身份映射丢失来训练它。这使得映射功能可以捕获顺序和层次结构,同时保留语言信息。我们在一个无并行数据的VC任务上评估了我们的方法。客观评价表明,转换后的特征序列在全局方差和调制谱方面接近自然。主观评价表明,在并行和两倍数据量的有利条件下,转换后的语音质量与基于高斯混合模型的方法相当。
---
英文标题:
《Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial
  Networks》
---
作者:
Takuhiro Kaneko, Hirokazu Kameoka
---
最新提交年份:
2017
---
分类信息:

一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  We propose a parallel-data-free voice-conversion (VC) method that can learn a mapping from source to target speech without relying on parallel data. The proposed method is general purpose, high quality, and parallel-data free and works without any extra data, modules, or alignment procedure. It also avoids over-smoothing, which occurs in many conventional statistical model-based VC methods. Our method, called CycleGAN-VC, uses a cycle-consistent adversarial network (CycleGAN) with gated convolutional neural networks (CNNs) and an identity-mapping loss. A CycleGAN learns forward and inverse mappings simultaneously using adversarial and cycle-consistency losses. This makes it possible to find an optimal pseudo pair from unpaired data. Furthermore, the adversarial loss contributes to reducing over-smoothing of the converted feature sequence. We configure a CycleGAN with gated CNNs and train it with an identity-mapping loss. This allows the mapping function to capture sequential and hierarchical structures while preserving linguistic information. We evaluated our method on a parallel-data-free VC task. An objective evaluation showed that the converted feature sequence was near natural in terms of global variance and modulation spectra. A subjective evaluation showed that the quality of the converted speech was comparable to that obtained with a Gaussian mixture model-based method under advantageous conditions with parallel and twice the amount of data.
---
PDF链接:
https://arxiv.org/pdf/1711.11293
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群