摘要翻译:
我们提出了一种几何方法来测量光滑层束沿边界的野分枝。利用该方法,我们研究了具有正特征的局部域的对数分支群的分次商,并给出了任意剩余域的分次商。我们还定义了满足一定条件的l-adic束的特征圈为对数余切丛上的圈,并证明了与0-截面的交求特征类,从而求出欧拉数。定义2.1.1在V2中得到修正。
---
英文标题:
《Wild ramification and the characteristic cycle of an l-adic sheaf》
---
作者:
Takeshi Saito
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We propose a geometric method to measure the wild ramification of a smooth etale sheaf along the boundary. Using the method, we study the graded quotients of the logarithmic ramification groups of a local field of positive characteristic with arbitrary residue field. We also define the characteristic cycle of an l-adic sheaf, satisfying certain conditions, as a cycle on the logarithmic cotangent bundle and prove that the intersection with the 0-section computes the characteristic class, and hence the Euler number. Definition 2.1.1 is corrected in v2.
---
PDF链接:
https://arxiv.org/pdf/0705.2799