摘要翻译:
本文主要由两个部分组成:奇异变种的Leray理论的模拟及其在Parshin剩余理论中的应用。第一部分独立于第二部分。它使用惠特尼分层理论。第二部分是第一部分的应用。特别地,给出了关于残数的Parshin互易定律的一个几何和非常透明的证明。
---
英文标题:
《Parshin Residues via Coboundary Operators》
---
作者:
Mikhail Mazin
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
The article consist of two main parts: an analog of the Leray Theory for Singular Varieties and its application to the Theory of Parshin's Residues. The first part is independent from the second. It uses the theory of Whitney stratifications. The second part is an application of the first. In particular, a geometric and very transparent proof of the Parshin's Reciprocity Law for residues is given.
---
PDF链接:
https://arxiv.org/pdf/0707.3748