摘要翻译:
本文提出了一种基于参数产品划分模型的贝叶斯风险价值计算方法。风险价值是衡量和控制资产或投资组合市场风险的标准工具,也是监管目的所必需的。它的流行部分是因为它是一种容易理解的风险度量。产品划分模型的使用使我们即使在存在外围点的情况下也能保持在正常的环境中,并获得用于风险价值计算的封闭形式的表达式。我们提出并比较了两种不同的场景:均值向量的产品划分结构和方差向量的产品划分结构。我们将我们的方法应用于MIB30中的一个意大利股市数据集。数值结果清楚地表明,产品划分模型可以成功地用于量化市场风险暴露。所得到的风险价值估计与最大似然方法完全一致,但我们的方法提供了关于数据聚类结构和外围点存在的更丰富的信息。
---
英文标题:
《Bayesian Analysis of Value-at-Risk with Product Partition Models》
---
作者:
Giacomo Bormetti, Maria Elena De Giuli, Danilo Delpini and Claudia
Tarantola
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
In this paper we propose a novel Bayesian methodology for Value-at-Risk computation based on parametric Product Partition Models. Value-at-Risk is a standard tool to measure and control the market risk of an asset or a portfolio, and it is also required for regulatory purposes. Its popularity is partly due to the fact that it is an easily understood measure of risk. The use of Product Partition Models allows us to remain in a Normal setting even in presence of outlying points, and to obtain a closed-form expression for Value-at-Risk computation. We present and compare two different scenarios: a product partition structure on the vector of means and a product partition structure on the vector of variances. We apply our methodology to an Italian stock market data set from Mib30. The numerical results clearly show that Product Partition Models can be successfully exploited in order to quantify market risk exposure. The obtained Value-at-Risk estimates are in full agreement with Maximum Likelihood approaches, but our methodology provides richer information about the clustering structure of the data and the presence of outlying points.
---
PDF链接:
https://arxiv.org/pdf/0809.0241