摘要翻译:
设k是特征p的代数闭域,设G是Aut的子群(k[[t]])是k上局部幂级数环上的忠实作用。设R是特征为0的离散赋值环,剩余域为K。人们问,是否可能在Aut(R[[t]])内找到一个忠实的作用G,它还原为给定的作用,即到特征0的提升。我们证明了在G=D_4和p=2的情况下存在可升降作用。事实上,我们引入了一个族,超简单的D_4-作用,它总是可以提升到特征0。
---
英文标题:
《Liftable D_4-Covers》
---
作者:
Louis Hugo Brewis
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
Let k be an algebraically closed field of characteristic p and let G be a subgroup of Aut(k[[t]]) be a faithful action on a local power series ring over k. Let R be a discrete valuation ring of characteristic 0 with residue field k. One asks, whether it is possible to find a faithful action G inside Aut(R[[t]]) which reduces to the given action, i.e. a lift to characteristic 0. We show that liftable actions exists in the case that G = D_4 and p = 2. In fact we introduce a family, the supersimple D_4 -actions, which can always be lifted to characteristic 0.
---
PDF链接:
https://arxiv.org/pdf/0708.3952