摘要翻译:
我们介绍了一个操作框架来分析开放量子系统中的非绝热阿贝尔和非阿贝尔,循环和非循环几何相。为了消除绝热条件,我们将动力学不变量理论推广到在任意无卷积主方程下演化的开系统的情形。然后,通过与支配主方程的超算符相关联的动力学不变量的Jordan标准型来定义几何相位。作为副产品,我们给出了相位对给定的退相干过程鲁棒性的充分条件。我们通过考虑一个与环境发生马尔可夫相互作用的二能级系统来说明我们的结果,其中我们证明了系统获得的非绝热几何相位可以以这样一种方式构造,即它对退相和自发辐射都是鲁棒的。
---
英文标题:
《Dynamical invariants and nonadiabatic geometric phases in open quantum
systems》
---
作者:
M. S. Sarandy, E. I. Duzzioni, M. H. Y. Moussa
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We introduce an operational framework to analyze non-adiabatic Abelian and non-Abelian, cyclic and non-cyclic, geometric phases in open quantum systems. In order to remove the adiabaticity condition, we generalize the theory of dynamical invariants to the context of open systems evolving under arbitrary convolutionless master equations. Geometric phases are then defined through the Jordan canonical form of the dynamical invariant associated with the super-operator that governs the master equation. As a by-product, we provide a sufficient condition for the robustness of the phase against a given decohering process. We illustrate our results by considering a two-level system in a Markovian interaction with the environment, where we show that the non-adiabatic geometric phase acquired by the system can be constructed in such a way that it is robust against both dephasing and spontaneous emission.
---
PDF链接:
https://arxiv.org/pdf/707.2579