摘要翻译:
我们考虑扩散常数为D的布朗粒子在膨胀的D维球体内运动,球体的表面是粒子的吸收边界。球体的初始半径为L_0,并以恒定速率c膨胀。我们计算了粒子生存到时间t并且在离球心距离r处的联合概率密度p(r,tr_0),假定它是从球心距离r_0开始的。
---
英文标题:
《Survival of a diffusing particle in an expanding cage》
---
作者:
Alan J Bray, Richard Smith
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We consider a Brownian particle, with diffusion constant D, moving inside an expanding d-dimensional sphere whose surface is an absorbing boundary for the particle. The sphere has initial radius L_0 and expands at a constant rate c. We calculate the joint probability density, p(r,t|r_0), that the particle survives until time t, and is at a distance r from the centre of the sphere, given that it started at a distance r_0 from the centre.
---
PDF链接:
https://arxiv.org/pdf/705.0501