摘要翻译:
提出了一种基于完全数据的对数凹密度极大似然估计的主动集算法。在此快速算法的基础上,我们提出了一种处理任意删失或装箱数据的EM算法。
---
英文标题:
《Active Set and EM Algorithms for Log-Concave Densities Based on Complete
and Censored Data》
---
作者:
Lutz Duembgen, Andre Huesler, Kaspar Rufibach
---
最新提交年份:
2011
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
---
英文摘要:
We develop an active set algorithm for the maximum likelihood estimation of a log-concave density based on complete data. Building on this fast algorithm, we indidate an EM algorithm to treat arbitrarily censored or binned data.
---
PDF链接:
https://arxiv.org/pdf/707.4643