摘要翻译:
Selman和Kautz关于“知识汇编”的工作确定了如何近似(加强和/或削弱)命题知识库,以牺牲完整性为代价来加快查询处理。在这种经典方法中,查询使用给定知识库的霍恩过逼近和欠逼近,知识库被表示为合取范式(CNF)中的命题公式。除了Horn函数类之外,由于具有与Horn函数相似的诱人的推演计算性质,人们可以想象其他布尔函数类也可以起到同样的作用。事实上,Zanuttini提出了仿射布尔函数类可以用于知识编译,并提出了仿射近似算法。由于CNF在表示仿射函数时很笨拙,Zanuttini考虑了模型集表示和模2同余方程的使用。本文提出了一种基于降阶二叉决策图的算法。这导致了一个比模型集更紧凑的表示,一旦我们建立了仿射布尔函数的一些有用的性质,一个更有效的算法。
---
英文标题:
《Binary Decision Diagrams for Affine Approximation》
---
作者:
Kevin Henshall, Peter Schachte, Harald S{\o}ndergaard and Leigh
Whiting
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Selman and Kautz's work on ``knowledge compilation'' established how approximation (strengthening and/or weakening) of a propositional knowledge-base can be used to speed up query processing, at the expense of completeness. In this classical approach, querying uses Horn over- and under-approximations of a given knowledge-base, which is represented as a propositional formula in conjunctive normal form (CNF). Along with the class of Horn functions, one could imagine other Boolean function classes that might serve the same purpose, owing to attractive deduction-computational properties similar to those of the Horn functions. Indeed, Zanuttini has suggested that the class of affine Boolean functions could be useful in knowledge compilation and has presented an affine approximation algorithm. Since CNF is awkward for presenting affine functions, Zanuttini considers both a sets-of-models representation and the use of modulo 2 congruence equations. In this paper, we propose an algorithm based on reduced ordered binary decision diagrams (ROBDDs). This leads to a representation which is more compact than the sets of models and, once we have established some useful properties of affine Boolean functions, a more efficient algorithm.
---
PDF链接:
https://arxiv.org/pdf/0804.0066