摘要翻译:
本文介绍了在证明辅助工具COQ的帮助下,对公共知识逻辑进行的实验。公共知识逻辑的主要特征是一组主体以归纳的方式共享关于某一命题的知识的同名模态。这种模态是通过使用不动点方法来指定的。此外,从这些实验中,我们讨论和比较了在使用公共知识逻辑的特定理论中可以证明的定理的结构。这些结构表明了理论(如证明助手Coq中实现的)和元理论之间的相互作用。
---
英文标题:
《Common knowledge logic in a higher order proof assistant?》
---
作者:
Pierre Lescanne (LIP)
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
This paper presents experiments on common knowledge logic, conducted with the help of the proof assistant Coq. The main feature of common knowledge logic is the eponymous modality that says that a group of agents shares a knowledge about a certain proposition in a inductive way. This modality is specified by using a fixpoint approach. Furthermore, from these experiments, we discuss and compare the structure of theorems that can be proved in specific theories that use common knowledge logic. Those structures manifests the interplay between the theory (as implemented in the proof assistant Coq) and the metatheory.
---
PDF链接:
https://arxiv.org/pdf/0712.3147