摘要翻译:
二元线性混合模型在分析两个相关标记的纵向数据时是有用的。本文提出了一个包含随机效应或一阶自回归过程和两个标记的独立测量误差的二元线性混合模型。使用SAS Proc MIXED提供了适合这些模型的代码和技巧。讨论了该程序的局限性,并在艾滋病毒感染领域展示了一个例子。SAS Proc MIXID尽管有一些局限性,但在纵向研究中是一个很好的工具,可以很容易地扩展到多变量反应。
---
英文标题:
《Bivariate linear mixed models using SAS proc MIXED》
---
作者:
Rodolphe Thi\'ebaut, H\'el\`ene Jacqmin-Gadda, Genevi\`eve Ch\^ene,
Catherine Leport, Daniel Commenges
---
最新提交年份:
2007
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
Bivariate linear mixed models are useful when analyzing longitudinal data of two associated markers. In this paper, we present a bivariate linear mixed model including random effects or first-order auto-regressive process and independent measurement error for both markers. Codes and tricks to fit these models using SAS Proc MIXED are provided. Limitations of this program are discussed and an example in the field of HIV infection is shown. Despite some limitations, SAS Proc MIXED is a useful tool that may be easily extendable to multivariate response in longitudinal studies.
---
PDF链接:
https://arxiv.org/pdf/705.0568