摘要翻译:
提出了一种新的金融市场中相互作用主体的时空模型。它是J\'Arpe2005提出的Curie-Weiss模型和时空模型的结合,着重于临界温度和磁化强度,导出了该模型的性质,证明了哈密顿量是温度参数的充分统计量,从而可以对温度参数进行统计推断,从而可以说明当前金融形势离金融危机有多远,并监测金融交易稳定性以检测恶意风险指示信号。
---
英文标题:
《A new space-time model for volatility clustering in the financial market》
---
作者:
Maria Boguta and Eric J\"arpe
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
英文摘要:
A new space-time model for interacting agents on the financial market is presented. It is a combination of the Curie-Weiss model and a space-time model introduced by J\"arpe 2005. Properties of the model are derived with focus on the critical temperature and magnetization. It turns out that the Hamiltonian is a sufficient statistic for the temperature parameter and thus statistical inference about this parameter can be performed. Thus e.g. statements about how far the current financial situation is from a financial crisis can be made, and financial trading stability be monitored for detection of malicious risk indicating signals.
---
PDF链接:
https://arxiv.org/pdf/1002.0609