全部版块 我的主页
论坛 经济学人 二区 外文文献专区
298 0
2022-03-07
摘要翻译:
在C上,我们证明了光滑射影曲面上一般点的多点Seshadri常数的可能值除了一个唯一的极限点之外,构成一个离散集。这一结果除了具有理论意义外,还具有实用价值。我们给出了P^2上Seshadri常数的显式下界的显式改进和P^2在一般点上爆破的丰满因子的新结果。
---
英文标题:
《Discrete behavior of Seshadri constants on surfaces》
---
作者:
Brian Harbourne, Joaquim Roe
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Working over C, we show that, apart possibly from a unique limit point, the possible values of multi-point Seshadri constant for general points on smooth projective surfaces form a discrete set. In addition to its theoretical interest, this result is of practical value, which we demonstrate by giving significantly improved explicit lower bounds for Seshadri constants on P^2 and new results about ample divisors on blow ups of P^2 at general points.
---
PDF链接:
https://arxiv.org/pdf/0709.3937
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群