摘要翻译:
我们研究了在分层晶格和接近渗流阈值的三维晶格上的链路稀释的$\PMJ$Ising自旋玻璃模型。我们证明了以前计算的零温度不动点在温度扰动方面是不稳定的,并且不属于稀释-温度平面上的任何临界线。我们讨论了这种不稳定不动点的存在对优化算法使用的影响,并说明了如何考虑熵效应以获得正确的物理行为和临界点。
---
英文标题:
《Entropic Effects in the Very Low Temperature Regime of Diluted Ising
Spin Glasses with Discrete Couplings》
---
作者:
Thomas Jorg, Federico Ricci-Tersenghi
---
最新提交年份:
2009
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study link-diluted $\pm J$ Ising spin glass models on the hierarchical lattice and on a three-dimensional lattice close to the percolation threshold. We show that previously computed zero temperature fixed points are unstable with respect to temperature perturbations and do not belong to any critical line in the dilution-temperature plane. We discuss implications of the presence of such spurious unstable fixed points on the use of optimization algorithms, and we show how entropic effects should be taken into account to obtain the right physical behavior and critical points.
---
PDF链接:
https://arxiv.org/pdf/707.048