摘要翻译:
本文给出了一种求解具有各种参数不确定性的线性动力系统随机优化问题的新方法。该方法基于张量形式建立参数不确定性的数学模型。该方法考虑了以下几个问题:预测、数据处理和最优控制。仿真结果说明了所提方法的性能和有效性。
---
英文标题:
《Stochastic Optimization of Linear Dynamic Systems with Parametric
Uncertainties》
---
作者:
Vadim Yatsenko (State Design Office Yuzhnoye, Ukraine)
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
This paper describes a new approach to solving some stochastic optimization problems for linear dynamic system with various parametric uncertainties. Proposed approach is based on application of tensor formalism for creation the mathematical model of parametric uncertainties. Within proposed approach following problems are considered: prediction, data processing and optimal control. Outcomes of carried out simulation are used as illustration of properties and effectiveness of proposed methods.
---
PDF链接:
https://arxiv.org/pdf/0909.2542