摘要翻译:
我们分析了中子星包层中离子的导热系数(相当于晶体物质中声子的导热系数)。本文利用变分形式和Monte Carlo方法进行动量空间积分,计算了原子核晶体中离子/声子的热导率。我们考虑了声子-声子和声子-电子的散射机制,并表明声子-电子散射在不太低的密度下占主导地位。我们从文献中提取了离子液体或气体中的离子导热系数。在T>105K和105g cm^-3<Rho<1014g cm^-3的情况下,用解析表达式近似得到了离子/声子电导率的数值。中子星包络中典型的磁场B~10^12G并不影响这种电导率,尽管它们强烈地降低了电子在磁场中的热导率。在磁场中,离子导热系数远小于电子导热系数。然而,在外层中子星包层中,它可能大于整个磁场中的电子电导率,这对冷却中子星中穿过磁力线的热传输很重要。离子电导率可以大大降低磁化中子星外包层内热传导的各向异性。
---
英文标题:
《Thermal conductivity of ions in a neutron star envelope》
---
作者:
A.I. Chugunov (1), P. Haensel ((1) Ioffe Physico-Technical
Instititute, St.Petersburg; (2) N.Copernicus Astronomical Center, Warsaw)
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Plasma Physics 等离子体物理学
分类描述:Fundamental plasma physics. Magnetically Confined Plasmas (includes magnetic fusion energy research). High Energy Density Plasmas (inertial confinement plasmas, laser-plasma interactions). Ionospheric, Heliophysical, and Astrophysical plasmas (includes sun and solar system plasmas). Lasers, Accelerators, and Radiation Generation. Low temperature plasmas and plasma applications (include dusty plasmas, semiconductor etching, plasma-based nanotechnology, medical applications). Plasma Diagnostics, Engineering and Enabling Technologies (includes fusion reactor design, heating systems, diagnostics, experimental techniques)
基础等离子体物理。磁约束等离子体(包括磁聚变能研究)。高能量密度等离子体(惯性约束等离子体,激光-等离子体相互作用)。电离层、太阳物理和天体物理等离子体(包括太阳和太阳系等离子体)。激光,加速器和辐射产生。低温等离子体和等离子体应用(包括尘埃等离子体、半导体蚀刻、基于等离子体的纳米技术、医疗应用)。等离子体诊断、工程和使能技术(包括聚变反应堆设计、加热系统、诊断、实验技术)
--
---
英文摘要:
We analyze the thermal conductivity of ions (equivalent to the conductivity of phonons in crystalline matter) in a neutron star envelope. We calculate the ion/phonon thermal conductivity in a crystal of atomic nuclei using variational formalism and performing momentum-space integration by Monte Carlo method. We take into account phonon-phonon and phonon-electron scattering mechanisms and show that phonon-electron scattering dominates at not too low densities. We extract the ion thermal conductivity in ion liquid or gas from literature. Numerical values of the ion/phonon conductivity are approximated by analytical expressions, valid for T>10^5 K and 10^5 g cm^-3 < \rho < 10^14 g cm^-3. Typical magnetic fields B~10^12 G in neutron star envelopes do not affect this conductivity although they strongly reduce the electron thermal conductivity across the magnetic field. The ion thermal conductivity remains much smaller than the electron conductivity along the magnetic field. However, in the outer neutron star envelope it can be larger than the electron conductivity across the field, that is important for heat transport across magnetic field lines in cooling neutron stars. The ion conductivity can greatly reduce the anisotropy of heat conduction in outer envelopes of magnetized neutron stars.
---
PDF链接:
https://arxiv.org/pdf/707.4614