摘要翻译:
最近的实验表明,许多生物系统在临界点附近自组织,这暗示了一个共同的设计原则。虽然有人认为信息传输在临界点附近是最优化的,但信息传输如何依赖于输入信号的动态、信息需要传输的距离以及到临界点的距离仍不清楚。本文采用随机模拟的方法研究了二维Ising系统的输入自旋和输出自旋之间的瞬时互信息和信息传输速率。瞬时互信息随温度非单调变化,但随输入信号相关时间单调增加。相反,信息传输速率表现出作为输入相关时间的函数的最大值。此外,存在一个最佳温度,使该最大信息传输速率最大化。它产生于对输入中的变化做出快速响应的必要性,以便在单位时间内传输更多的信息,以及对可靠响应的必要性之间的权衡。最佳温度位于临界点以上,但随着输入和输出自旋之间距离的增加,最佳温度向临界点移动。
---
英文标题:
《The behaviour of information flow near criticality》
---
作者:
Matthijs Meijers, Sosuke Ito, Pieter Rein ten Wolde
---
最新提交年份:
2019
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Recent experiments have indicated that many biological systems self-organise near their critical point, which hints at a common design principle. While it has been suggested that information transmission is optimized near the critical point, it remains unclear how information transmission depends on the dynamics of the input signal, the distance over which the information needs to be transmitted, and the distance to the critical point. Here we employ stochastic simulations of a driven 2D Ising system and study the instantaneous mutual information and the information transmission rate between a driven input spin and an output spin. The instantaneous mutual information varies non-monotonically with the temperature, but increases monotonically with the correlation time of the input signal. In contrast, the information transmission rate exhibits a maximum as a function of the input correlation time. Moreover, there exists an optimal temperature that maximizes this maximum information transmission rate. It arises from a tradeoff between the necessity to respond fast to changes in the input so that more information per unit amount of time can be transmitted, and the need to respond to reliably. The optimal temperature lies above the critical point, but moves towards it as the distance between the input and output spin is increased.
---
PDF链接:
https://arxiv.org/pdf/1906.00787