全部版块 我的主页
论坛 经济学人 二区 外文文献专区
336 0
2022-03-07
摘要翻译:
标题中的问题首先由高盛和唐纳森提出,雷兹尼科夫部分回答了这个问题。我们给出了如下完整的回答:如果G既可实现为闭3-流形的基本群,又可实现为紧致K\\Ahler流形的基本群,那么G必然是有限的,因而属于O(4)的有限子群的一个众所周知的列表。
---
英文标题:
《Which 3-manifold groups are K\"ahler groups?》
---
作者:
Alexandru Dimca, Alexander I. Suciu
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Geometric Topology        几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--

---
英文摘要:
  The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G can be realized as both the fundamental group of a closed 3-manifold and of a compact K\"ahler manifold, then G must be finite, and thus belongs to the well-known list of finite subgroups of O(4).
---
PDF链接:
https://arxiv.org/pdf/0709.4350
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群