摘要翻译:
符号级预编码在MIMO系统中的实际应用具有挑战性,因为复杂的优化算法必须在合理的计算资源下实现。在MIMO预编码系统的实际实现中,每组码元的处理时间是一个至关重要的参数,尤其是在高吞吐量模式下。本文设计了一种降低复杂度的符号级优化算法。符号级预编码器的性能在每组符号的处理时间方面被显示为改进。
---
英文标题:
《Low Complexity Symbol-Level Design for Linear Precoding Systems》
---
作者:
Jevgenij Krivochiza, Ashkan Kalantari, Symeon Chatzinotas, Bjorn
Ottersten
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
The practical utilization of the symbol-level precoding in MIMO systems is challenging since the implementation of the sophisticated optimization algorithms must be done with reasonable computational resources. In the real implementation of MIMO precoding systems, the processing time for each set of symbols is a crucial parameter, especially in the high-throughput mode. In this work, a symbol-level optimization algorithm with reduced complexity is devised. Performance of a symbol-level precoder is shown to improve in terms of the processing times per set of symbols.
---
PDF链接:
https://arxiv.org/pdf/1711.09062