全部版块 我的主页
论坛 经济学人 二区 外文文献专区
304 0
2022-03-07
摘要翻译:
Mustata、Takagi和Watanabe在[F阈值和Bernstein-Sato多项式]中定义了F阈值,它是特征$P$环上理想对的不变量。本文证明了正则局部环上检验理想的F-阈值等于跳跃数。本文给出了环上F-阈值的一个公式。这个公式是[Huneke,Mustata,Takagi和Watanabe:F-阈值、紧闭包、整闭包和多重界]中例子的推广。我们证明了f-跳跃系数与f-阈值之间存在一个不等式。特别地,我们观察到F-纯阈值和F-阈值之间的比较。作为应用,我们证明了由单纯锥定义的多环正则性的刻划,以及F-阈值在某些情况下的合理性。
---
英文标题:
《Formulas of F-thresholds and F-jumping coefficients on toric rings》
---
作者:
Daisuke Hirose
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  F-thresholds are defined by Mustata, Takagi and Watanabe in [F-thresholds and Bernstein-Sato polynomials], which are invariants of the pair of ideals on rings of characteristic $p$. In their paper, it is proved F-thresholds equal to jumping numbers for the test ideal on regular local rings. In this note, we give an formula of F-thresholds on toric rings. This formula is a generalization of the example in [Huneke, Mustata, Takagi and Watanabe:F-thresholds, tight closure, integral closure, and multiplicity bounds]. We prove that there exists an inequality between F-jumping coefficients and F-thresholds. In particular, we observe a comparison between F-pure thresholds and F-thresholds. As applications, we prove the characterization of regularity for toric rings defined by a simplicial cone, and the rationality of F-thresholds in some cases.
---
PDF链接:
https://arxiv.org/pdf/0709.1627
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群