摘要翻译:
我们证明了如果一组实基拟指数的步骤1离散Wronskian的所有根都是实的、单的且至少相差1,则这组拟指数的复跨度有一个由实系数拟指数组成的基。这一结果推广了关于多项式空间的B和M.Shapiro猜想。证明是基于XXX模型的Bethe ansatz方法。
---
英文标题:
《On reality property of Wronski maps》
---
作者:
E.Mukhin, V.Tarasov, A.Varchenko
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that if all roots of the discrete Wronskian with step 1 of a set of quasi-exponentials with real bases are real, simple and differ by at least 1, then the complex span of this set of quasi-exponentials has a basis consisting of quasi-exponentials with real coefficients. This result generalizes the B. and M.Shapiro conjecture about spaces of polynomials. The proof is based on the Bethe ansatz method for the XXX model.
---
PDF链接:
https://arxiv.org/pdf/0710.5856