全部版块 我的主页
论坛 经济学人 二区 外文文献专区
357 0
2022-03-07
摘要翻译:
本文分析了动态环境下高斯模型上的信念传播。最近,这被提出作为一种通过分布式协议对局部测量值进行平均的方法(“共识传播”,Moallemi&Van Roy,2006),其中平均值可用于每个单个节点的读出。在底层网络不变但平均值波动(“动态数据”)的情况下,收敛性和精度由相关的Ruelle-Perron-Frobenius算子的谱性质决定。对于Erdos-Renyi图上的高斯模型,数值计算指出,在大尺寸极限下仍有一个谱间隙,这意味着异常良好的可伸缩性。在底层网络也波动的模型(“动态网络”)中,平均比在动态数据情况下更有效。总之,这意味着这些方法在非常大的系统中具有非常好的性能,并为大型(和动态)信息系统的统计物理开辟了一个新的领域。
---
英文标题:
《Gaussian Belief with dynamic data and in dynamic network》
---
作者:
Erik Aurell, Ren\'e Pfitzner
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
一级分类:Physics        物理学
二级分类:Physics and Society        物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--

---
英文摘要:
  In this paper we analyse Belief Propagation over a Gaussian model in a dynamic environment. Recently, this has been proposed as a method to average local measurement values by a distributed protocol ("Consensus Propagation", Moallemi & Van Roy, 2006), where the average is available for read-out at every single node. In the case that the underlying network is constant but the values to be averaged fluctuate ("dynamic data"), convergence and accuracy are determined by the spectral properties of an associated Ruelle-Perron-Frobenius operator. For Gaussian models on Erdos-Renyi graphs, numerical computation points to a spectral gap remaining in the large-size limit, implying exceptionally good scalability. In a model where the underlying network also fluctuates ("dynamic network"), averaging is more effective than in the dynamic data case. Altogether, this implies very good performance of these methods in very large systems, and opens a new field of statistical physics of large (and dynamic) information systems.
---
PDF链接:
https://arxiv.org/pdf/0905.0266
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群