摘要翻译:
Robert-Sommeria-Miller平衡统计力学预测二维流动的最终组织。这个强大的理论很难在实践中处理,因为它与无限多的约束相关联。最近,基于Casimir函数或流函数的变分问题已经被考虑了几个更简单的变分问题。我们建立了所有这些变分问题之间的关系,证明了使用更简单的公式是正确的。
---
英文标题:
《Simpler Variational Problem for Statistical Equilibria of the 2D Euler
Equation and Other Systems with Long Range Interactions》
---
作者:
Freddy Bouchet (INLN)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Pattern Formation and Solitons 图形形成与孤子
分类描述:Pattern formation, coherent structures, solitons
图案形成,相干结构,孤子
--
---
英文摘要:
The Robert-Sommeria-Miller equilibrium statistical mechanics predicts the final organization of two dimensional flows. This powerful theory is difficult to handle practically, due to the complexity associated with an infinite number of constraints. Several alternative simpler variational problems, based on Casimir's or stream function functionals, have been considered recently. We establish the relations between all these variational problems, justifying the use of simpler formulations.
---
PDF链接:
https://arxiv.org/pdf/710.5094