摘要翻译:
在有限时间热力学框架下研究了一类循环布朗热机。对于无限长的循环时间,发动机工作在卡诺效率极限,但产生零功率。对于最大功率下的效率,我们得到了一个与内可逆Curzon-Ahlborn效率不同的通用表达式。我们的结果用一个工作在与时间相关的调和势中的简单一维引擎来说明。
---
英文标题:
《Efficiency at maximum power: An analytically solvable model for
stochastic heat engines》
---
作者:
Tim Schmiedl and Udo Seifert
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional engine working in and with a time-dependent harmonic potential.
---
PDF链接:
https://arxiv.org/pdf/710.4097