摘要翻译:
本文证明了在极化的toric流形上,关于Donaldson toric退化的相对K$-稳定是Calabi极值度量存在的必要条件,并证明了对于允许极值度量的toric曲面,修正的K$-能量在$G_0$-不变K\\Ahler度量空间中是正确的。
---
英文标题:
《A note on the $K$-stability on toric manifolds》
---
作者:
Bin Zhou and Xiaohua Zhu
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this note, we prove that on polarized toric manifolds the relative $K$-stability with respect to Donaldson's toric degenerations is a necessary condition for the existence of Calabi's extremal metrics, and also we show that the modified $K$-energy is proper in the space of $G_0$-invariant K\"ahler metrics for the case of toric surfaces which admit the extremal metrics.
---
PDF链接:
https://arxiv.org/pdf/0706.0505