摘要翻译:
本文研究曲线上的多对数与阿贝尔格式之间的联系。主要结果表明,阿贝尔格式上的多对数可以作为多对数在适当的子曲线上的推进而得到。如果阿贝尔格式是光滑射影曲线的雅可比格式,则这种推进也可以写成与曲线基本类的杯积。
---
英文标题:
《A note on polylogarithms on curves and abelian schemes》
---
作者:
Guido Kings
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
In this note we investigate the connection between polylogarithms on curves and abelian schemes. The main result shows that the polylogarithm on the abelian scheme can be obtained as the push-forward of the polylogarithm on a suitable sub-curve. If the abelian scheme is the Jacobian of a smooth projective curve, this push-forward can also be written as a cup-product with the fundamental class of the curve.
---
PDF链接:
https://arxiv.org/pdf/0711.2443