摘要翻译:
我们证明了简单格多边形Pick定理的Cappell-Shaneson版本是对偶虚子流形的特征数与稳定几乎复流形的特征类之间一般关系的结果。这个关系类似于Alvarez-Gaume和Witten的奇迹般的对消公式,并且是由点的复共边环中的Landweber-Novikov代数的作用所强加的。
---
英文标题:
《Miraculous Cancellation and Pick's Theorem》
---
作者:
K.E. Feldman
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We show that the Cappell-Shaneson version of Pick's theorem for simple lattice polytopes is a consequence of a general relation between characteristic numbers of virtual submanifolds dual to the characteristic classes of a stably almost complex manifold. This relation is analogous to the miraculous cancellation formula of Alvarez-Gaume and Witten, and is imposed by the action of the Landweber-Novikov algebra in the complex cobordism ring of a point.
---
PDF链接:
https://arxiv.org/pdf/0710.0828