摘要翻译:
《性别之战》描述了雄性和雌性交配行为中的不对称冲突。雄性可能更花心或忠诚,而雌性要么快速或害羞,导致一个循环的动态。调整后的复制器方程预测了所有四种策略的稳定共存。在这种情况下,我们考虑了由有限种群规模引起的涨落的影响。我们证明它们不可避免地导致种群中两种策略的灭绝。然而,随着系统规模的增大,到灭绝发生的典型时间明显延长。同时,在共存态附近形成一个异常平坦的准平稳概率分布。这种行为源于在不动点附近消失的线性确定性漂移。我们给出了平均消光时间和准平稳概率分布的数值数据和解析方法。
---
英文标题:
《Anomalous finite-size effects in the Battle of the Sexes》
---
作者:
Jonas Cremer, Tobias Reichenbach, Erwin Frey
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Populations and Evolution 种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
---
英文摘要:
The Battle of the Sexes describes asymmetric conflicts in mating behavior of males and females. Males can be philanderer or faithful, while females are either fast or coy, leading to a cyclic dynamics. The adjusted replicator equation predicts stable coexistence of all four strategies. In this situation, we consider the effects of fluctuations stemming from a finite population size. We show that they unavoidably lead to extinction of two strategies in the population. However, the typical time until extinction occurs strongly prolongs with increasing system size. In the meantime, a quasi-stationary probability distribution forms that is anomalously flat in the vicinity of the coexistence state. This behavior originates in a vanishing linear deterministic drift near the fixed point. We provide numerical data as well as an analytical approach to the mean extinction time and the quasi-stationary probability distribution.
---
PDF链接:
https://arxiv.org/pdf/709.0225