摘要翻译:
关于活动如何影响能量消耗的公认智慧是,进行的活动越多,到一天结束时燃烧的卡路里就越多。然而,过着艰苦生活的传统狩猎采集者每天燃烧的卡路里并不比生活在节省劳动力环境中的西方人口多。事实上,现在有大量关于人类和其他动物的数据表明,长期的生活方式改变,包括增加锻炼或其他身体活动,并不会导致每日能量消耗(DEE)的相应增加。这是因为人类和其他动物在有机体水平上表现出一定程度的能量补偿,通过减少其他生物过程消耗的能量来改善由活动增加而产生的DEE的一些增加。能量补偿可以是相当大的,在人类身上可以达到数百卡路里。但是,从长期来看,为实现能量补偿而被下调的过程还远不清楚,尤其是在人类中。我们不知道能量补偿是如何实现的。我在这里回顾了有关人类和其他物种运动干预研究的文献,表明基础代谢率(BMR)或低水平活动如坐立不安发挥作用的冲突,如果有的话,尤其是当身体成分的变化被排除在外时。在BMR和低水平活动不是能量补偿的主要组成部分的情况下,是什么驱动了它?我讨论了线粒体效率的变化和BMR昼夜波动的变化如何有助于我们对能量管理的理解。目前尚未探索的这些机制和其他机制可能为能量补偿是如何实现的奥秘提供重要的见解。
---
英文标题:
《The mystery of energy compensation》
---
作者:
Lewis G. Halsey
---
最新提交年份:
2021
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Populations and Evolution 种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
---
英文摘要:
The received wisdom on how activity affects energy expenditure is that the more activity is undertaken, the more calories will have been burned by the end of the day. Yet traditional hunter-gatherers, who lead physically hard lives, burn no more calories each day than western populations living in labour-saving environments. Indeed, there is now a wealth of data, both for humans and other animals, demonstrating that long-term lifestyle changes involving increases in exercise or other physical activities do not result in commensurate increases in daily energy expenditure (DEE). This is because humans and other animals exhibit a degree of energy compensation at the organismal level, ameliorating some of the increases in DEE that would occur from the increased activity by decreasing the energy expended on other biological processes. And energy compensation can be sizable, reaching many hundreds of calories in humans. But the processes that are downregulated in the long-term to achieve energy compensation are far from clear, particularly in humans. We do not know how energy compensation is achieved. My review here of the literature on relevant exercise intervention studies, for both humans and other species, indicates conflict regarding the role that basal metabolic rate (BMR) or low level activity such as fidgeting play, if any, particularly once changes in body composition are factored out. In situations where BMR and low-level activity are not major components of energy compensation, what then drives it? I discuss how changes in mitochondrial efficiency and changes in circadian fluctuations in BMR may contribute to our understanding of energy management. Currently unexplored, these mechanisms and others may provide important insights into the mystery of how energy compensation is achieved.
---
PDF链接:
https://arxiv.org/pdf/2107.13418