全部版块 我的主页
论坛 经济学人 二区 外文文献专区
313 0
2022-03-07
摘要翻译:
本文针对一类部分观测的多元扩散问题,提出了一种新的粒子滤波算法。连续时间动态模型,其中%信号由多元扩散过程给出。我们考虑了多种观测方案,包括有误差观测的扩散,多元扩散分量子集的观测,以及强度为扩散已知函数的泊松过程(Cox过程)的到达时间。与目前可用的方法不同,我们的粒子滤波器不需要使用时间离散来近似过渡和/或观测密度。相反,它们建立在最近的方法上,用于精确模拟扩散过程和无偏估计跃迁密度,如\cite{Besk:Papa:Robe:Fear:2006}所述。特别地,我们引入了推广的Poisson估计,它推广了\cite{Besk:Papa:Robe:Fear:2006}的Poisson估计。因此,我们的滤波器避免了由%时间离散引起的系统偏差,并且与其他连续时间滤波器相比具有显著的计算优势。这些优点在理论上得到了一个中心极限定理的支持。
---
英文标题:
《Particle Filters for Partially Observed Diffusions》
---
作者:
Paul Fearnhead, Omiros Papaspiliopoulos and Gareth Roberts
---
最新提交年份:
2007
---
分类信息:

一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics        统计学
二级分类:Computation        计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--

---
英文摘要:
  In this paper we introduce a novel particle filter scheme for a class of partially-observed multivariate diffusions. %continuous-time dynamic models where the %signal is given by a multivariate diffusion process. We consider a variety of observation schemes, including diffusion observed with error, observation of a subset of the components of the multivariate diffusion and arrival times of a Poisson process whose intensity is a known function of the diffusion (Cox process). Unlike currently available methods, our particle filters do not require approximations of the transition and/or the observation density using time-discretisations. Instead, they build on recent methodology for the exact simulation of the diffusion process and the unbiased estimation of the transition density as described in \cite{besk:papa:robe:fear:2006}. %In particular, w We introduce the Generalised Poisson Estimator, which generalises the Poisson Estimator of \cite{besk:papa:robe:fear:2006}. %Thus, our filters avoid the systematic biases caused by %time-discretisations and they have significant computational %advantages over alternative continuous-time filters. These %advantages are supported theoretically by a A central limit theorem is given for our particle filter scheme.
---
PDF链接:
https://arxiv.org/pdf/710.4245
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群