全部版块 我的主页
论坛 经济学人 二区 外文文献专区
209 0
2022-03-07
摘要翻译:
用最近的方法处理快乐和认知的不确定性往往需要很高的计算工作量。在本文中,我们提出了一种数值抽样方法,通过所谓的模糊随机变量来减轻处理信息的计算负担。
---
英文标题:
《Numerical Sensitivity and Efficiency in the Treatment of Epistemic and
  Aleatory Uncertainty》
---
作者:
Eric Chojnacki (IRSN), Jean Baccou (IRSN), S\'ebastien Destercke
  (IRSN, IRIT)
---
最新提交年份:
2007
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--

---
英文摘要:
  The treatment of both aleatory and epistemic uncertainty by recent methods often requires an high computational effort. In this abstract, we propose a numerical sampling method allowing to lighten the computational burden of treating the information by means of so-called fuzzy random variables.
---
PDF链接:
https://arxiv.org/pdf/0712.2141
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群