全部版块 我的主页
论坛 经济学人 二区 外文文献专区
345 0
2022-03-07
摘要翻译:
假定一维扩散过程$x=\{X_t,0\leq t\leq t\}$,其漂移量$b(x)$和扩散系数$\sigma(\theta,x)=\sqrt{\theta}\sigma(x)$已知到$\theta>0$,在(0,t)$中的某个点$t^*\转换波动机制。在从$x$的离散时间观测的基础上,问题是估计波动率结构$t^*$变化的瞬间,以及在变化点之前和之后的两个值$theta$,例如$theta_1$和$theta_2$。假定采样以规则间隔的时间间隔进行,间隔长度为$\delta_n$,且$n\delta_n=t$。为了解决我们的统计问题,我们使用最小二乘法。在高频格式下给出了估计量的相合性、收敛速度和分布结果。我们还研究了具有未知漂移和未知波动但常数的扩散过程的情形。
---
英文标题:
《Least squares volatility change point estimation for partially observed
  diffusion processes》
---
作者:
A. De Gregorio, S.M. Iacus
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  A one dimensional diffusion process $X=\{X_t, 0\leq t \leq T\}$, with drift $b(x)$ and diffusion coefficient $\sigma(\theta, x)=\sqrt{\theta} \sigma(x)$ known up to $\theta>0$, is supposed to switch volatility regime at some point $t^*\in (0,T)$. On the basis of discrete time observations from $X$, the problem is the one of estimating the instant of change in the volatility structure $t^*$ as well as the two values of $\theta$, say $\theta_1$ and $\theta_2$, before and after the change point. It is assumed that the sampling occurs at regularly spaced times intervals of length $\Delta_n$ with $n\Delta_n=T$. To work out our statistical problem we use a least squares approach. Consistency, rates of convergence and distributional results of the estimators are presented under an high frequency scheme. We also study the case of a diffusion process with unknown drift and unknown volatility but constant.
---
PDF链接:
https://arxiv.org/pdf/709.2967
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群