全部版块 我的主页
论坛 经济学人 二区 外文文献专区
283 0
2022-03-07
摘要翻译:
对无序介质中定向聚合物(DPRM)微扰展开式的部分求和,可以将DPRM的有效耦合常数Δ(t)$幂次的骨架展开式表示为DPRM复型场理论中两个复型之间的束缚态,并等价于量子粒子在外部Δ%-势中的束缚态。强耦合相的特征是:$\delta(t)$与$t$,$\delta(t)\sim\exp(p_{c}t)$成指数关系,$%p_{c}$是粒子的结合能。对于维度$d>2$,强耦合阶段存在于$\delta_{0}>\delta_{c}(d)$。在$d=1$中,我们显式地计算了有效耦合次幂最低阶自由能的均方位移和第2累积量。我们认为,消除骨架展开式中的$\exp(p_{c}t)$项需要对骨架级数进行额外的部分求和。
---
英文标题:
《Skeleton expansions for directed polymers in disordered media》
---
作者:
Semjon Stepanow
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Disordered Systems and Neural Networks        无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--

---
英文摘要:
  Partial summations of perturbation expansions of the directed polymer in disordered media (DPRM) enables one to represent the latter as skeleton expansions in powers of the effective coupling constant $\Delta (t)$, which corresponds to the binding state between two replicas in the replica field theory of DPRM, and is equivalent to the binding state of a quantum particle in an external $\delta $% -potential. The strong coupling phase is characterized by the exponential dependence of $\Delta (t)$ on $t$, $\Delta (t)\sim \exp (p_{c}t)$ with $% p_{c} $ being the binding energy of the particle. For dimensions $d>2$ the strong coupling phase exists for $\Delta_{0}>\Delta _{c}(d)$. We compute explicitly the mean-square displacement and the 2nd cumulant of the free energy to the lowest order in powers of effective coupling in $d=1$. We argue that the elimination of the terms $\exp (p_{c}t)$ in skeleton expansions demands an additional partial summation of skeleton series.
---
PDF链接:
https://arxiv.org/pdf/710.0081
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群